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inclined to each other  a t  1-8 ° . The effect of non- 
parallelism is to increase the min imum distance of 
the fluorine a toms from the plane of the  overlapping 
perylene molecule (in the  region of overlap, Fig. 3c, d) 
by  0.08/~ to 3.31 A, and to decrease the  corresponding 
dis tance for fluoranil  carbon atoms by  0.04 A to 
3.19 /~. This resul t  is consistent both with F - C  
repulsion and C-C a t t rac t ion .  As might  be expected, 
the  shortest  intermolecular  distances are found 
between overlapping molecules; these have min imum 
values of 3.29 A for C-C, 3-34/~ for C-O, and 3.36/~ 
for C-F.  Minimum distances between non-overlapping 
molecules are 3 .39/~ for C-O, 3.45 A for F - F ,  3 .46/~  
for C-F,  and 3.53 A for C-C. 

The specimen mater ia l  was supplied by  Dr  W. G. 
Schneider. All computa t ions  for the project  were 
carried out by  Dr  F. R. Ahmed,  using the IBM650  
computer  of the Canadian  A r m y  Direc tora te  of 

Personnel Statistics, and the IBM 1620 computer of 
the National Research Council. Their assistance, and 
the continued encouragement of Dr W. H. Barnes, 
are gratefully acknowledged. 
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The paper deals with the probability distributions connected with the product of the structure 
amplitudes of a pair of related crystals and they represent, essentially, a generalization of the 
usual statistics to a pair of crystals. Expressions are derived for the distribution of the normalized 
'correlation intensity', Z=[FNI IFp[/(IN(Tp, and the 'normalized correlation amplitude', Y=Z½, 
where IFN] and [Fp I are the structure amplitudes of the two crystals containing N and P atoms 
respectively (P < N) and a~ and ap are the root-mean-square values of IFN[ and IFp[. One limiting 
form of the general distribution characterizes the usual statistics of a single crystal while the other 
corresponds to the two crystals being independent or 'non-related'. On the basis of these results 
a statistical criterion is proposed for use as an index to measure the 'degree of relatedness' between 
two compounds in practice. A critical assessment of the relative merits of the tests developed in 
this paper and the function P(w) suggested in Par t  I is also made. 

Introduct ion 

In  P a r t  I R a m a c h a n d r a n ,  Sr inivasan & Sarma  (1963) 
considered the problem of the  probabi l i ty  dis t r ibut ion 
of the difference in s t ruc ture  ampli tudes of two 
crystals  both when they  are related to and  when they  
are independent  of each other. F rom the results thus  
obtained it  was suggested t h a t  the dis t r ibut ion 
funct ion could be used in practice for test ing the  
degree of isomorphism of two compounds.  

In  this  paper  we shall be ma in ly  concerned with  
the corresponding problem of the dis t r ibut ion of the  
product  of the  two s t ruc ture  ampli tudes .*  Such a 
product  is in the  na tu re  of an  in tens i ty  and, in fact ,  
the  in tens i ty  f rom a single crystal  can be considered 
to be the product  of two ideally isomorphous,  identical  

* The nature of the general assumptions made and also 
the conditions of applicability etc. are the same as in Part I. 
So also the notation used here follows closely that of Part I. 
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crystals. Therefore the distribution derived for the 
product variable should tend, as a limiting case, 
to tha t  of a single crystal  as is in fact shown later 
to be the case. The other situation when the two 
crystals are entirely independent of each other will 
also be considered, and this is found to be another 
limiting case of the same general distribution. Thus 
the basic nature of the results obtained in this paper 
may be described as the generalization of the intensity 
statistics to a pair of crystals. 

In  the lat ter  half of the paper a statistical criterion 
will be developed which can be used in practice as 
an index to measure the 'degree of relatedness' 
between two compounds. The test  is essentially 
based on a quanti tat ive evaluation of the 'correlation' 
between the two structures. 

Case of related structure ampl i tudes  

Since we are mainly interested in deriving the distri- 
butions connected with the product of two variables, 
we make use of the following general result from 
probabili ty theory. If z = xy then 

P(z) = I P~((z/x); x)P~(x)(dx/x) (1) 

where P~.(y; x) is the conditional probabili ty density 
function for y for a given value of x and P~(x) is 
the probabil i ty density function for the variable x. 

We now define the product variable q as 

q-- lF ~vl lFPI (2) 

and use equation (1) to derive the distribution P(q) 
for different cases. 

(a) ]Von-centrosymmetric case 
When N and P are related the expressions for 

/)1 and P~. are (see Par t  I) 

21FpI { [FPI~[ 
P~(IFPI) = u--~S exp - - -~Z] " (3) 

P2(IF~I ; IFPI) 

- 2[FN] exp{ - a ~  IF2vI2+IFPIeI~~ f~o (2,FNIIFPI)u~ . (4) 

Substi tuting these in (1) and simplifying we get 

P(q) = ~ Io exp - x 2 -  dx, (5) 
upuQ o 7~ 

where 
IFPIuN a~q x - - - -  and k -  

Up UQ Up U~ " 

The integral in the above equation and its related 
forms also appear in other equations to be con- 
sidered below and they are discussed in Appendix I. 
By  the use of result (A3) of Appendix I the above 
expression reduces to 

P(q) = ~ Io Ko - -  (6) upuQ ~ \upu~] 

where Ko(x) is the Bessel function with imaginary 
argument (Watson, 1944). 

Let us now change the variable to t-=q/UpUq and 
obtain the distribution for t from (6) above. We 
obtain 

P(t)=4tlo(2tLx)Ko(2tl/(1 + c~2)) (7) 

where a=ap/aQ. This form is given here since it  is 
used in some calculations to be described later. 

However, we are more interested in obtaining the 
distribution for the normalized product variable, Z, 
which is defined by 

Z =  IF ~llFPl/ a~vuP . (8) 
The use of the symbol Z seems to be natural  since, 
as P tends to N, the right-hand side of (8) tends to 
]F~[2/<I~v> which is identical with z, the normalized 
intensity for a single crystal. Thus Z may be con- 
sidered as the 'normalized correlation intensi ty '  for 
a pair of crystals. The distribution for Z can be worked 
out from (7) by appropriate change of variable, namely 
by writing Z=(UQ/U_~c)t. We thus have 

P(Z)=4Z(1  +a2)I0(2Zc~V(1 +a2))K0[2Z(1A-~2)]. (9) 

This can also be writ ten in another simple form 

P(Z) = a-T2 Io \-~2 ] Ko ~ , (10) 

where 
u~=~/ui~,  u ~ - u  21U~ 2 - Q ~  N so tha t  a ~ + a ~ = l .  (11) 

We now consider another variable, Y, defined by 

Y=Z½= ([FuI[FP!] ½ . (12) 
\ UNUp / 

I t  is clear tha t  Y represents the 'normalized correla- 
tion amplitude'  of the two crystals. I t  is of interest 
to consider the distribution for Y. Applying the 
appropriate rule for transformation of variable, we 
get from (10) 

/ u-~ I0 ~ - - / K 0  \ ~ / .  (13) 

That  the expressions derived above for Z, Y, and t 
all represent real probabil i ty density functions can 
be checked by showing that  their integrals reduce to 
unity.  This is demonstrated for one of them ill 
Appendix II. 

(b ) Centrosymmetric case 
The expressions for P1 and P2 for this case are 

(see Par t  I) 

Pl(IF~l) = V(2/~o~)exp { -  IF~12/2u~}. (14) 
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1 {exp[--(IF~I+IF~I~)lj  
Pe(IF~vl; IFP] ) -  V ( 2 ~  ) 2 ~  

When substituted in (1) these lead to 

cosh( )S 7eapaQ x 4a~a~x~ j dx 
(16) 

where x=  IFp](~v/apaQ~2. Using (A3) of Appendix I, 
we obtain 

P ( q ) -- TU~ p (~--Q -~ K o \ a---ff ~ ] . (17) 

Similar to expression (7) for the non-centrosymmetric 
case, we now have 

2 
P(t) - --cosh (at)Ko(tV(1 + ~ ) )  . (18) 

The expressions for the normalized product variable 
Z thus take the forms 

P(Z)  = 2 ~/(1 +ae) cosh (Z~V(1 +ae))K0[Z(1 +a2)] (19) 
7g 

o r  

P(Z) = ~ae2 cosh \-~-22 ] K0 ~Z . (20) 

I t  follows that  the distribution for Y is 

_ p ( y )  = 4Y cosh - 7 ~  K0 . (21) 

I t  is interesting to note that  P(Z) is independent 
of a~. Now, when a~ -~ 0, the related and the unrelated 
cases should lead to the same distribution. Hence 
equation (25) for P(Z) for the unrelated case should 
be obtained on putting a~--> 0 in the distribution 
function for the related case, namely (10). This is 
readily verified to be the case. 

From equation (25) the expression for P(Y), is 
obtained in the form 

P(Y) = 8 Y3K0(2 y2) . (26) 

(b) Centrosymmetric case 
For this case PI(IFP]) is given by (14) and, since 

/V and P are independent, 

P2(tF~I; IFPI)= P2(IF~I)= 1/(2/~,)  exp 2a~v J " 

Substituting these in (1) we obtain (27) 

p(q) _ 2 foeXp { _  [ ]Fp[2 + q2 d]Fpl 
- -  ~ 21FT[2~vj, 

(28) 

where !Fp]/V(2)ap=x. By result (A3) this reduces to 

We thus have finally 

P(Z) = _2 Ko(Z) . (31) 

Case of unrelated s tructure  a m p l i t u d e s  

(a) f f  on-centrosymmetric case 
When N and P are independent of each other, 

PI([Fp]) is given by equation (3) while P2(IFlv] ; 1FP[) 
is given by 

- { 21__F~l exp - . (22) Pe([F~v[; [FpI) = Pe(]F~v[) = a~ (y~ J 

Substituting these in equation (1) we get 

4q I °° { ]Fp] ~ q~ } d]Fp] P(q) = ~ exp 
~P~, '0  a~, ~,]rpl  2 IFpl 

Putting [Fp]/(yp=x, this takes the form 

P(q) = e z - xZ+ - - .  (23) 
(Yp (72V x 

where lc=q/ayap. By the use of result (A3) of Appen- 
dix I, this gives 

4q 

For the normalized variable Z we thus obtain 

P(Z)=4ZKo(2Z)  . (25) 

p ( y )  = 4_y K0(Y2). (32) 
7~ 

In this case also we see that  P(Z) is independent 
of a~ and the expressions (31) and (32) are obtained 
by setting a~=0 in equations (20) and (21). 

Limi t ing  f o r m s  of the general  case  

We have already seen that in the limiting case when 
a~=O the general expression yields the distribution 
corresponding to the unrelated structure amplitudes. 
I t  is of interest to see what happens to the general 
expression in the other limiting case, namely when 
a~ -> 1. Since, physically, this situation is equivalent 
to P - > N ,  the variables Z and Y become z and y, 
the normalized intensity and normalized amplitude, 
respectively, for a single crystal. Thus we should 
expect that  the general expression given by equations 
(13) and (21) would reduce to the familiar functions 
~vP(y) and cP(y) (Ramachandran & Srinivasan, 1960) 
which are given by 

~vP(y)-- 2y exp {_y2}. (33) 

cP(y)= ]/(2/~) exp {_½y2}. (34) 
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This can be proved easily as follows. F i r s t ly  we observe 
tha t  when a~ tends  to 1, a.~ tends to 0 and both  Io(x) 
and Ko(x) in  expression (13) can be replaced by their  
asymptot ic  expansions,  since x is large. Thus, using 
the results 

~ { 1~ } 
Zo(x)- ~/ (2z  1 + ~ + . . . .  (35) 

e-X~½ { 1 ~. } 
Ko(x) = V(2x----- ~ 1 -  1! 8-----~ + . . . .  (36) 

in  (13) and s impl i fying we get 

2:r { 2 y~(].-,~,)[ 
P(y) = ~ exp -- a~ ] . (37) 

Since a~ tends to zero we m a y  subst i tu te  at--  V(1-a~) 
_ _  1 2 - - 1 -  ~a~. in  (37) which immedia te ly  gives expression 
(33). A corresponding result  can be shown for the 
centrosymmetr ic  case also. 

0.8 

0.5 

P(Y) 
0-4 

0"2 

0"4 0"8 1-2 1 "6 2"0 2"4 
Y 

Fig. 2. Probabi l i ty  dis t r ibut ion funct ion  P(y), for the  centre-  
symmet r i c  case, corresponding to ate--  - 1.0 (1); a t2=  0.9 (2); 
az2=0.8 (3); a l e = 0 . 5  (4) and  atg=O (5). 

N a t u r e  of the  d i s t r ibut ions*  

Let us now s tudy  the nature  of the dis t r ibut ion derived 
in  the earlier sections. We shall, however, consider 
in detai l  only the P(Y) curves since they  seem to be 
more useful from a pract ical  point  of view than  the 
P(Z) curves. 

The dis t r ibut ions P(Y) are given in Fig. 1 and 
Fig. 2 for the non-centrosymmetr ic  and  centre- 
symmetr ic  cases respectively. In  addi t ion to the two 
l imit ing forms, curves are also given for values of a~ 

5 1"2 

1-0 

0-8 

0"6 
P(y) 

o . 4 ~ o l 4  i 0!8 i 

0-2 

• • 1 -2  1"6  2"0 ' 214 

Y 
Fig. 1. Probabi l i ty  dis t r ibut ion funct ion  P(y), for the  non- 

cen t rosymmet r i c  case, corresponding to ate= 1.0 (1); 
~12=0"8 (3); o't~---0"5 (4); and  o'z~=O (5). 

* The calculat ions were all done on E D S A C  II with  a 
single p rogram to handle  bo th  een t rosymmet r i c  and  non- 
cen t rosymmet r i c  cases. The forms of the  funct ions  used were 
equat ions  (7) and  (18) and  bo th  P(Z)  and  P(Y) were obta ined  
f rom these b y  simple h a n d  calculation. 

equal  to 0.5 and 0-8. I t  can be seen from Fig. 1 tha t  
for a non-centrosymmetr ic  crystal,  the curve for the 
unrela ted case (a~=0) has properties s imilar  to the 
lvP(y) curve (a~=l )  in tha t  i ts  m a x i m u m  occurs 
away from the origin. The curves for other inter- 
mediate  values of a~ fall  in between these two curves. 

The nature  of the dis t r ibut ion for the centre- 
symmetr ic  case is ra ther  interesting. For a~=l, 
we have the usual  cP(y) curve, which has i ts  m a x i m u m  
value at the origin and which slowly decreases as 
Y increases. On the other hand,  for a~ = 0, the na ture  
of the curve is completely different. I t  s tarts  with a 
value zero at the origin (unlike the  cP(y) curve) 
and has a m a x i m u m  away from the origin (at Y _~ 0-5). 
For in te rmedia te  values of al 2, the behaviour  of the 
curve is somewhat  peculiar. Unt i l  about  a~=0.8 
the curve remains more or less s imilar  in  i ts  shape 
to tha t  for a~ = 0 excepting for a shift  in  the posit ion 
of the m a x i m u m  towards the origin. For large values 
of a~, the curve is close to the  cP(y) curve except in  
the region near  the origin. I t  is clear from the curves 
tha t  as a~ increases fur ther  the region of d iss imi lar i ty  
will  be confined more and more to the v ic in i ty  of 
the origin while, away from the origin, the curve will  
approach more closely the cP(y) curve. 

Parameter defining the degree ol relatedness 
of t w o  s t r u c t u r e s  

The dis t r ibut ion functions considered in  the earlier 
sections might  prove useful as qual i ta t ive  tests for 
relatedness in actual  practice. However, i t  seems 
desirable to have a quant i ta t ive  measure for this  
purpose. In  this  section we shall  develop a s ta t is t ical  
criterion which has the required property.  Define a 
parameter  ? by  

~2 -- ( Z ) r e l -  ( Z ) u n r e l  ' (38) 
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where (Z~ is the expectation value of Z and the 
different subscripts have the following meanings. 
(Z)rel refers to the theoretical value of (Z)  for the 
particular value of a~ for a pair of related crystals; 
(Z)unrel refers to the case when the two structures 
are completely independent and (Z)obs is the observed 
value of (Z). This last quantity can be calculated 
from the observed structure amplitudes of the two 
crystals since, by definition, 

:(IF t IF.I ) : zl  lIF, I . (39) 
<Z> \ ~--NN~P / V(ZIfNle)~(ZIrp] e) 

It  can be seen from the above relation that  (Z)  can 
also be described as the 'direct correlation coefficient' 
between the two structure amplitudes (Srinivasan, 
1961). 

0"9 

0"8 

(z) 
0"7 

0"6 

0-2 0-4 0"6 0"8 1 "0 

2 
o" 1 

Fig. 3. Graph of (Z ~ as a function of ~z 2 for non- 
centrosymmetric (N) and centrosymmetric case (C). 

The value of (Z)rel has been calculated for different 
values of a~ by numerical integration and the results 
are shown in Fig. 3. I t  is of some interest to discuss 
the form of the two curves. Though for any general 
value of ~ the calculation has to be done by numerical 
integration, the limiting cases can be dealt with 
by the following simple argument purely from a 
physical point of view. When ~ tends to unity 
we know that  the normalized correlation intensity Z 
tends to z, the normalized intensity for a single crystal, 
and we know that  <z> equals unity both for centro- 
symmetric and non-centrosymmetric cases. On the 
other hand when a~ tends to O, the two structures 
are independent and we can therefore write 

( z )  = \ (401 

Since each one of the quantities on the right hand 
side of the above equation represents the expectation 
value of the normalized structure amplitude of a 
single crystal, the value of (Z)  becomes z/4 for 
the non-centrosymmetric and 2/~ for the centre- 
symmetric case respectively. A direct calculation of 
(Z)  by means of expressions (25) and (31) also gives 

A C 16 - -  75 

the same values (Appendix III) which only proves 
the essential correctness of the above procedure. 

The curve thus starts with the value 0.637 at the 
origin for the centrosymmetric and 0-785 for the 
non-centrosymmetric case. The increase in its value 
is more rapid for the former than for the latter and 
both curves reach unity as a~ tends to unity. 

Returning to the parameter ~, as defined by (38) 
we see that  when there is complete lack of relatedness, 
~, should be equal to zero and when there is 'perfect 
relatedness', its value should be equal to unity. 
In practice it would have a value in between 0 and 1, 
and its actual value can be taken as a measure of 
the 'degree of relatedness' between the two com- 
pounds. 

Discuss ion  

I t  is interesting to compare the statistical tests 
suggested in this paper (in particular the value of 7) 
with the P(w) function considered in Part  I. 

The nature of the P(Y) curves suggests that  they 
are not likely to be very useful as a practical test for 
isomorphism. As compared with this the function 
P(w) seems to be powerful especially when a~ is 
large since, then, the theoretical curve has a pro- 
nounced maximum at the origin. 

However, there is one difficulty that  is likely to 
be met with in practice while applying the P(w) test. 
The observed structure amplitudes are always subject 
to errors, and since we take their difference for obtain- 
ing the P(w) curve these errors might introduce 
large fluctuations in the experimental curve. This 
might become particularly serious when a~ is large 
precisely in the region when the P(w) curves are most 
effective. This difficulty will not be present to the 
same degree with the P(Y) curves, but on the other 
hand there is not sufficient dissimilarity between 
the plots of the P(Y) functions in the related and the 
unrelated cases to make the test particularly efficient. 

As compared with these, the y test appears to have 
certain distinct features which would make it more 
useful than the others. Firstly, the calculation of ~, 
can be done very quickly. Secondly it is not as suscep- 
tible to errors in the observed intensities as P(w), 
since it is the product of the structure amplitudes 
that  enters its calculation. I t  is also independent of 
scaling errors as can be seen by the nature of the 
expression (39). In other words, F is relatively more 
stable as a statistical criterion. Finally it has the 
additional advantage that  it gives a quantitative 
estimate of the 'degree of relatedness' as contrasted 
with the other functions, which give results only in 
a qualitative way. 

The applicability of any of these tests rests primarily 
on the assumption that  the usual conditions of 
statistics hold good. However, the use of F seems 
to be justifiable even under quite different conditions 
provided it is interpreted in a more general sense 
based on its definition (equation (38)). Thus, for 
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instance, when the asymmetric unit contains dissimilar 
atoms or a pseudosymmetric molecule, even though 
the value of (Z}u~r~l can no longer be taken to be 
the ideal value for a random structure, it can still 
be calculated for the particular structure under con- 
sideration since, by definition, (Z}unrel is only the 
average value of Z for two structures when they are 
independent. Thus, structure factors can be calculated 
for any two random orientations of the molecules 
in the two structures and these can be used to evaluate 
(Z}u~rel by relation (39). An exactly similar manipula- 
tion simulating 'relatedness' in the two structures 
will give the value of (Z}rel. In this way it will be 
possible to eliminate whatever disturbing features 
that  may exist as a result of the asymmetric unit not 
satisfying the usual conditions. 

Detailed tests of these ideas are in progress and 
will be reported in due course. 

A P P E N D I X  I 

We are interested in the integrals of the type 

~ _1 exp -- x~ + dx (A1) 
o X 

where b is a constant. Substituting x--I/(k)e °, the 
above integral reduces to 

f ~ exp - (cosh 20) (A2) 2/c dO 

f = exp --2b (eosh q))dq) = Ko(21c) . (A3) 
o 

Also from the above result we get 

~ _1 exp - x - dx = e2kKo (2k) . (A4) 
0 X 

A P P E N D I X  II 

That the various functions derived in the text are 
real probability density functions can be checked by 
showing that  their integrals are equal to unity. 
We make use of the following result (Watson, 1944, 
p. 410) : 

I°°K u tu+~+l (2a), (2b)~F (/z + v + 1) 
o ( a t ) J ~ ( b t ) d t  = (a  2 + b2)~,+~+ 1 . (A5) 

Consider the expression for P(t) for the non-centro- 
symmetric case (equation (7)). A comparison with 

the above result (A5) shows that  we should substitute 
/z--0, v=0,  b = i b '  where b'=2o~, a'---2~/(l+a2). The 
integral of P(t) then proves to be unity. I t  has not 
been possible to prove the corresponding result for 
the general expression of the centrosymmetric case. 
However, it is possible to do it for the limiting case 
when a [ = 0  (expression (31)). We make use of the 
following formula (Watson, 1944, p. 388): 

Substitution of v = 0, # = 1 gives the desired result. 

A P P E N D I X  III 

The expectation values of Z for a~ = 0 can be worked 
out directly since we have the required distribution 
functions (expressions (25) and (31)). We thus have, 
for the centrosymmetric case, 

(Z )un re l  = 2 _ ZKo(Z)dZ. (A7)  
0 

Using formula (A6) this gives immediately (Z}unrel= 
2/g. So also for the non-centrosymmetrie case, 

f ( Z ) u n r e l  ~- 4Z2Ko(2Z)dZ (A8) 
0 

which, again by using (A6), reduces to ~/4. 

One of the authors (R. S.) wishes to thank Prof. 
Sir Nevill Mott and Dr W. H. Taylor for provision of 
facilities and Dr M. V. Wilkes for permission to use 
the EDSAC. His thanl~s are also due to Dr J. C. P. 
Miller for helpful discussions regarding numerical 
integration and to Miss J. C. Ward for assistance 
with the computer. He also wishes to thank the 
Commonwealth Scholarship Commission for the award 
of a scholarship, during the tenure of which part  
of the present work was done. 

References 

RAMACHAI~DRA_.~, G. N.  & SRINIVASAN, R .  (1960). Acta 
Cryst. 12, 410. 

RAMACH~DRAN, G. N., SRI~rVASXN, R. & RAGU~ATt~Z 
SXR~A, V. (1963). Acta Cryst. 16, 662. 

SRINIVASAN, R. (1961). Proc. Indian  Acad. Sei. 53 A, 
252. 

WAtSOn, G. ~. (1944). A Treatise on the Theory of Bessel 
Functions. Cambridge: University Press. 


